Nearly 10,000 years ago, Earth came out of its most recent ice age. Vast, icy swaths of land around the poles thawed, melting the glaciers that had covered them for nearly 100,000 years. Why, after such a long period of cold, did the ice age finally come to an end? Scientists are still searching for the answer.

Milankovitch cycles – NASA model

The traditional explanation — and short answer — for why ice ages begin and end is a series of eccentricities and wobbles in the planet’s orbit known as the Milankovitch cycles that describe patterns in Earth’s orbit and axial tilt. Over time, our planet’s orbit around the sun alternates from being more circular to more egg-shaped. At the same time, our planet’s axis tends to both tilt and wobble. Milankovitch found that these factors combine at regular intervals to cause land at 65 degrees north latitude (a parallel that runs through Canada, Alaska and parts of Eurasia) to become warmer than normal and theorized that this warming and then subsequent cooling of the Northern Hemisphere explained the planet’s cycle of ice ages — or glacials — and warmer periods — or interglacials. But this doesn’t explain why the ice ages ended in the Southern Hemisphere about the same time.

One alternate explanation is that when the Northern Hemisphere began to warm around 13,000 years ago, meltwater and icebergs flooded the North Atlantic Ocean, causing a temporary cooling of the Northern Hemisphere known as the Younger Dryas period (12,900 to 11,700 years ago). There is some evidence that the Younger Dryas affected ocean currents in a way that caused the Southern Atlantic to warm up, stirring up the ocean in the process and releasing tons of stored carbon dioxide into the atmosphere, which in turn caused glaciers in the Southern Hemisphere to melt over the next 1,500 years. The end result was likely a more carbon-rich atmosphere that continued to warm both hemispheres, lifting the planet out of the glacial period.

Another hypothesis, published in 2021, suggests that the length and intensity of the Southern Hemisphere’s winters could dictate when ice ages end. On the surface, it sounds like the polar opposite of the Milankovitch theory, which suggests that Northern Hemispheric summers drive the climatic changes. However, long winters in the Southern Hemisphere alter wind patterns near the tropics, which can create frequent storms over an area of the Pacific Ocean known as the Tropical Warm Pool — a region of ocean that stores and releases great amounts of heat. Altered winds can create storms in this area, which in turn releases massive amounts of water vapor that can act as a greenhouse gas.

Another idea is that salty water pouring from the Indian Ocean into the Atlantic Ocean helped end the last ice age. The Indian Ocean had become super salty because a drop in sea level had cut off a critical current that flows from the Pacific to the Indian Ocean; normally, this current diluted the Indian’s very salty tropical waters. A change in wind patterns and currents in the Indian Ocean could have caused the Indian Ocean to dump tons of dense, salty water into the Atlantic Ocean, altering its currents and temperatures in both the Northern and Southern hemispheres.

More evidence is needed to know for sure if any of these hypotheses can actually explain why the last ice age ended. But glaciologists are continuing to look into this cold case

From a June 23, 2023, Live Science article by Cameron Duke